Anesthesia: Essays and Researches  Login  | Users Online: 803 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Home | About us | Editorial board | Ahead of print | Search | Current Issue | Archives | Submit article | Instructions | Copyright form | Subscribe | Advertise | Contacts


 
Table of Contents  
ORIGINAL ARTICLE
Year : 2016  |  Volume : 10  |  Issue : 3  |  Page : 432-436  

Lower limb surgeries under combined femoral and sciatic nerve block


Department of Anaesthesia, Government Medical College, Amritsar, Punjab, India

Date of Web Publication27-Sep-2016

Correspondence Address:
Joginder Pal Attri
Department of Anaesthesia, Government Medical College, Amritsar - 143 001, Punjab
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0259-1162.177186

Rights and Permissions
   Abstract 

Introduction: Peripheral nerve blocks are gaining popularity for many infraumblical surgeries with the development of new techniques such as ultrasound and peripheral nerve stimulator. It provides stable hemodynamic, better, and prolonged postoperative analgesia. This study was carried out to see the effectiveness of combined femoral and sciatic nerve block with ropivacaine alone and by adding fentanyl.
Materials and Methods: The study was carried out on 100 patients scheduled for lower limb surgeries and were randomly divided into two groups of 50 each. In Group A, patients received 20 ml of 0.5% ropivacaine for femoral nerve block and same dose for sciatic nerve block and in Group B, 25 μg fentanyl was added each for femoral nerve and sciatic nerve block along with ropivacaine. All hemodynamic parameters, onset and duration of sensory and motor blocks were noted. The patient characteristics were analyzed using the “Chi-square tests” and the intergroup comparison of the parametric data was carried out using the unpaired t-test using software IBM SPSS 17.0.
Results: Combined femoral and sciatic nerve block provide longer duration of postoperative analgesia of about 12–13 h. All the above-mentioned parameters were statistically non-significant.
Conclusion: Hence in this study, onset and duration of sensory and motor block was comparable in both groups. However postoperative analgesia was prolonged as compared to neuraxial blockade without any hemodynamic instability.

Keywords: Peripheral nerve blocks, regional anesthesia, ropivacaine, sciatic block, sensory block


How to cite this article:
Bansal L, Attri JP, Verma P. Lower limb surgeries under combined femoral and sciatic nerve block. Anesth Essays Res 2016;10:432-6

How to cite this URL:
Bansal L, Attri JP, Verma P. Lower limb surgeries under combined femoral and sciatic nerve block. Anesth Essays Res [serial online] 2016 [cited 2020 Sep 18];10:432-6. Available from: http://www.aeronline.org/text.asp?2016/10/3/432/177186




   Introduction Top


Regional block anesthesia is the best option for life-saving operations where both general and central neuraxial anesthesia are risky, since no fasting, special preparation, or preoperative optimization is required.[1] Furthermore, peripheral nerve blocks provide surgical anesthesia with better cardiorespiratory stability [2] as compared to the central neuraxial blockade which having side effects of hypotension, bradycardia, meningitis, postdural puncture headache, hematoma, neurological deficit, etc.[3] With the development of new techniques such as ultrasound and peripheral nerve stimulator, the scope of anesthesia has shifted from general anesthesia (GA) and central neuraxial blockade for isolated limb surgery to peripheral nerve blocks.[4] One of the most useful but most neglected anesthetic technique is the combination of sciatic and femoral nerve block (3:1) for lower limb surgery.[5] However, the maximum dose of a drug used should be kept in mind as large volumes are used in two blocks.[6] Ropivacaine is a long-acting amide local anesthetic. Being less lipophilic than bupivacaine resulting in less central nervous system toxicity and cardiotoxicity.[7] The addition of adjuvants leads to lowering of drug dose, early onset and with prolonged duration. The purpose of this study was to compare efficacy of 0.5% ropivacaine alone and 0.5% ropivacaine with fentanyl in combined femoral and sciatic nerve block with respect to onset and duration of the block as primary aim and duration of analgesia and complications associated with it over others traditional methods as a secondary aim.


   Materials and Methods Top


In a prospective, randomized, double-blind study, 100 patients of American Society of Anesthesiologists (ASA) Grades I, II and III in the age group of 18–65 years of either sex scheduled for lower limb surgeries were included after the approval of the Institution's Ethical and Scientific Committee. Patient's refusal, morbid obesity, pregnancy, and allergy to the study drug were excluded from the study. Informed written consent of patients was obtained and was randomly divided into two groups of 50 each using sealed envelopes. The technique of combination of femoral and sciatic nerve was given to patient to provide complete surgical anaesthesia around the knee and below the knee. In Group A, patients received 20 ml of 0.5% ropivacaine for femoral nerve block and 20 ml of 0.5% ropivacaine for sciatic nerve block and in Group B, patients received 20 ml of 0.5% ropivacaine plus 25 µg fentanyl for femoral nerve block and 20 ml of 0.5% ropivacaine plus fentanyl 25 µg for sciatic nerve block. A day before surgery detailed preanesthetic checkup was done. Visual analog scale (VAS) was explained to the patients to determine the level of analgesia in the postoperative period. It was carried out with a 0–10 cm line with mark “0” means “no pain” and mark “10” means “severe pain.”

Tablet alprazolam 0.25 mg was given on the night before surgery. On the day of operation, multipara monitor was attached and baseline respiratory rate (RR), heart rate (HR), noninvasive blood pressure, peripheral oxygen saturation and electrocardiography were recorded and were monitored at every 5 min interval until 30 min of local anesthetic injection and then every 10 min until 1 h and then every 15 min until the end of surgery. Oxygen administered via oxygen mask at 6 L/min.

Intravenous (i.v.) line was secured with 18-gauge intracath and injection midazolam 0.04 mg/kg body weight was given. Patients were preloaded with 10 ml/kg body weight of Ringer lactate solution over 15–20 min. For femoral nerve block, the patient was kept in supine position with leg extended and the table flattened to maximize operator access to the inguinal region. Under all aseptic precautions, the femoral block was given by inserting 22-gauge needle 1.5–2 cm lateral to the femoral artery and 1–2 cm distal to an inguinal ligament in a cephalic direction at 30–45° angle using nerve stimulator [Figure 1]. The needle was advanced till motor response in the form of dancing patella with the help of nerve stimulator using a current of 2.0 mA. The drug was injected when contractions were elicited at a current of 0.3–0.5 mA. For sciatic nerve block, the patient was placed in lateral decubitus position (operative side up) with the normal leg kept straight and the hip joint of the upper leg in the 40° of flexion, 20–30° of adduction and neutral as to rotation [Figure 2]. The knee of the extremity to be blocked was flexed at a 90° angle, so that posterior superior iliac spine, greater trochanter, and knee come in straight line. Sciatic nerve block was given by inserting a needle at the intersection point of perpendicular from the midpoint of line between greater trochanter to posterior superior iliac spine to line drawn between greater trochanter to sacral hiatus. Needle advanced until contraction in the form of plantar flexion with a peripheral nerve stimulator. Assessment of block and monitoring was carried out by taking time 0 as the time of the completion of the anesthetic injection. Sensory block was assessed as loss of pinprick sensation to a 22-gauge needle for both femoral and sciatic distributions every 5 min for the first 20 min then every 10 min till complete surgical anesthesia. The onset of sensory block was taken as when patient has no pain (score 2) in the lower limb. Total duration of sensory loss was taken as when patient again started feeling of dull pain (score 1) in the lower limb. Motor blockade was evaluated based on modified Bromage scale as no movement (4), unable to raise the extended leg or bend the knees (3), unable to raise the extended leg, but able to bend the knees (2), able to move the feet, but not able to bend the knees (1), complete leg and foot movement (0) at an interval of 5 min for the first 20 min then every 10 min till complete loss of movement occur.
Figure 1: Technique of femoral nerve block

Click here to view
Figure 2: Technique of sciatic nerve block

Click here to view


Onset of motor block was taken as no movement (score 4) and total duration of motor block till resolution of motor block at knee and foot (score 1). Pain score was assessed every 30 min during surgery. In case, patient experienced mild pain (VAS ≤ 3) intraoperative supplementation was given in the form of injection ketamine 0.5 mg/kg intravenously. This was repeated within 10 min interval to a maximum of 2 times, after which the patient was given GA and were excluded from study. Sedation score using four point scale awake (1), drowsy but responsive to command (2), very drowsy but responsive to pain (3), unresponsive (4) was monitored every 5 min for first 30 min then every 10 min for 1 h then 15 min until completion of surgery. Postoperatively patient's sensory, motor block and VAS score was assessed half an hourly for 1 h then hourly for 8 h then 2 hourly for 12 h then 3 hourly for 24 h after giving block. Rescue analgesia was given in the form of injection diclofenac sodium dose 75 mg i/m or injection tramadol 50 mg slow i.v. Time of demand of first rescue analgesic was noted. Injection ondansteron i.v. was given for postoperative nausea and vomiting. The patients were monitored for side effects and complications such as intravascular injection, nerve damage, infection, neuropathy. Nerve damage was monitored in the form of any residual weakness in blocked limb.

The data from this study was systematically collected, compiled and statistically analyzed using software IBM SPSS 17.0 (SPSS Inc., IBM, Chicago, IL, USA) to draw relevant conclusions. Data was expressed as a mean and standard deviation, number, and percentages. The patient characteristics were analyzed using the “Chi-square tests” and the inter group comparison of the parametric data was carried out using the unpaired t-test. The P value was finally determined to evaluate the level of significance. P <0.05 was considered significant at 5% significance level; P < 0.01 was considered significant at 1% significance level and P < 0.001 was considered highly significant.


   Results Top


This study was carried out on 100 patients divided into two groups of 50 each of age group of 18–65 years with ASA Grades I, II, and III and all patients completed the thesis work in period of 1½ years, both groups underwent surgeries around knee and below knee with no failure rate and no surgical case cancellation and were comparable with respect to demographic characteristics, hemodynamic parameters, side effects at various time intervals starting from baseline until completion of surgery and mean duration of surgery as shown in [Table 1].
Table 1: Demographic variables in Groups A and B

Click here to view


After administering the study drug, the mean time taken for onset of sensory and motor block and their duration is shown in [Table 2].
Table 2: Sensory and motor block characteristics in Groups A and B

Click here to view


Although in both groups, there was no significant difference regarding onset and duration of block, but the patient's and surgeon's satisfaction score was better in both groups over other conventional techniques and local anesthetics and adjuvants.

VAS score was used to monitor the patients for postoperative pain. VAS was 0 till 8 h of the study period then it started increasing in both the groups. Patients demanded the first dose of rescue analgesia at 15th h as shown in [Figure 3].
Figure 3: Perioperative visual analogue scale score for 24 h

Click here to view



   Discussion Top


Provision of anesthesia for any surgery should be such that the technique must meet the demands of the surgery, patient comfort, and proficiency of anesthesiologist. Road traffic accidents are the greatest killer and lead to increased morbidity and mortality nowadays. In the past decades, GA was preferred in trauma surgery. GA disrupts the sympathoadrenal compensatory reflexes and physiological balance in traumatized patients. Furthrmore, fasting status of patients admitted for emergency surgeries is not confirmed to give GA safely without any complication. Regional anesthesia is the safest option to provide anesthesia to these patients. The comparison of GA versus regional anesthesia has been discussed and debated over the years. Because of simplicity, safety, and effectiveness regional anesthesia are gaining popularity as it has advantages of cardiovascular stability and early postoperative rehabilitation. Out of various regional anesthesia techniques, it was shown that continuous spinal and epidural anesthesia provides better postoperative analgesia and better hemodynamic stability during anesthesia than single-shot spinal anesthesia. However, the use of large spinal and epidural needles along with catheters for continuous spinal anesthesia leads to various side effects e.g. postdural puncture headache, hypotension, bradycardia, spinal hematoma, and meningitis. In comparison, peripheral nerve blocks of lower limb provide surgical anesthesia with minimal hemodynamic effects and without reduction in the regional blood flow of the lower extremity. In the past, lower extremity peripheral nerve blocks were seldom the anesthetic procedure of choice for patients undergoing lower limb surgery, primarily because of anesthesiologist's lack of experience in performing these procedures. Various studies were conducted regarding the safety of combined femoral and sciatic nerve block over general and central neuraxial blocks for lower limb surgeries. Mehourotra and Mehourotra [8] compared 3 in 1 femoral with sciatic nerve block over GA in isolated lower limb surgery in the trauma patient. Aksoy et al.[9] compared continuous spinal and peripheral nerve block in hip replacement surgery and Akkaya et al.[10] compared ultrasound guided femoral and sciatic nerve block and spinal anesthesia for total knee arthroplasty and found peripheral nerve block a simple, safe, and effective method. Patients who were not candidates for safe spinal or epidural anesthesia because of cardiovascular instability and anticoagulatent therapy can undergo lower extremity surgery under combined femoral and sciatic nerve block safely. Similarly, in our study two patients with cardiac valvular diseases and low fixed cardiac output underwent surgery without any hemodynamically instability and bleeding complication. Similar results were found by Vijayamohan et al.[11] in a study total knee replacement was done under combined femoral and sciatic nerve block. Baddoo [6] also concluded peripheral nerve block as an effective technique of anesthesia for lower limb amputation in diabetic patients providing cardiovascular stability as well as good postoperative analgesia. Similarly Tantry et al.[2] conducted a study in anticoagulated patients with the severe valvular disease under combined femoral and sciatic nerve block without any complications.

Combined femoral and sciatic nerve block provides longer duration of postoperative analgesia of about 12–13 h as compared to a central neuraxial block of about 4–5 h. This had the beneficial effect of the use of less number of analgesic doses in the form of nonsteroidal anti-inflammatory drugs and opioids which have many side effects such as postoperative nausea, vomiting, sedation, and adequate pain control resulting in early mobilization. In our study duration of postoperative analgesia of 13 h and two doses of rescue analgesics in 24 h are in concordance with results by Papper et al.[12] for postoperative pain management. As there are various approaches for sciatic nerve block e.g. anterior, posterior, parasacral etc., but the posterior approach of Labat had better success rates as compared to other approaches. Similar results recorded by Tagariello [13] in a study on sciatic nerve block approaches showed that success rate with the posterior approach was found to be almost 99% over 15,000 patients. Among various local anesthetics, the use of ropivacaine improves the quality of block, provide prolonged duration of sensory block and postoperative analgesia. The addition of opioids prolonged the duration of block.[14] In our study, we carried out a comparative evaluation of 0.5% ropivacaine alone and 0.5% ropivacaine plus 25 μg of fentanyl in combined femoral and sciatic nerve block using nerve stimulator for lower limb orthopedic surgeries. In our study, patient's characteristics such as demographic variables age, sex, ASA grade were comparable in both the groups. The mean duration of surgery was comparable in both groups. Cardiorespiratory parameters such as heart rate, systolic blood pressure, diastolic blood pressure, RR, oxygen percent saturation remain stable and comparable in both groups intraoperatively. Studies conducted by Petroheilou et al.,[15] Casati et al.,[16] Theodosiadis et al.,[17] Fanelli et al.,[18] Baddoo [6] using ropivacaine in lower limb peripheral nerve block also observed no changes in cardiorespiratory parameter perioperatively.

In our study, mean onset time of sensory and motor block, mean duration of sensory and motor block and postoperative analgesia, requirement of total doses of rescue analgesics, VAS score perioperatively for 24 h, incidence of side effects and complications was comparable in both groups. Similar results were found by Magistris et al.[19] and Tang et al.[20]

Limitation of our study is that fentanyl used in a dose of 25 µg for femoral and sciatic nerve block individually had no benefit effect in early onset and duration of sensory and motor block and in the prolonging the duration of analgesia. Hence, it is recommended to study higher doses of fentanyl along with ropivacaine for effective differences in sensory as well as motor block.


   Conclusion Top


It has been concluded that combined femoral-sciatic nerve block using ropivacaine and fentanyl is one of the most useful yet most neglected anesthetic procedures. This can be used for lower limb surgeries without any major complications and with no drug toxicity. It can be used in critically ill patients where both GA and central coaxial block carries a high risk of mortality. This technique is safe and simple to master and slowly gaining popularity worldwide. It is having minimum hemodynamic instability and can be used in patients with valvular cardiac diseases and other cardiac ailments with fixed cardiac output, diabetic, and even patients on anti-coagulants. Although we could not draw any significant difference by adding fentanyl, but as the technique and drugs used offers prolonged analgesia with negligible toxicity over other traditional techniques and drugs, so overall patient's satisfaction is better. So we highly recommend using femoral-sciatic nerve block using ropivacaine with fentanyl for varieties of lower limb procedures.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

 
   References Top

1.
White PF, Kehlet H, Neal JM, Schricker T, Carr DB, Carli F; Fast-Track Surgery Study Group. The role of the anesthesiologist in fast-track surgery: From multimodal analgesia to perioperative medical care. Anesth Analg 2007;104:1380-96.  Back to cited text no. 1
[PUBMED]    
2.
Tantry TP, Kadam D, Shetty P, Bhandary S. Combined femoral and sciatic nerve blocks for lower limb anaesthesia in anticoagulated patients with severe cardiac valvular lesions. Indian J Anaesth 2010;54:235-8.  Back to cited text no. 2
[PUBMED]  Medknow Journal  
3.
Mansour A. Femoral nerve block versus spinal anesthesia for lower limb peripheral vascular surgery. AJAIC 2006;9:1.  Back to cited text no. 3
    
4.
Malik S, Krishna D, Malik S. Combined psoas compartment and sciatic nerve block for lower limb surgery: An alternative anesthetic option in high-risk geriatric patients. Karnataka Anaesth J 2015;1:85-8.  Back to cited text no. 4
  Medknow Journal  
5.
Moore DC. Sciatic and femoral nerve block. J Am Med Assoc 1952;150:550-4.  Back to cited text no. 5
[PUBMED]    
6.
Baddoo HK. Sciatic and femoral nerve block. Ghana Med J 2009;43:24-8.  Back to cited text no. 6
    
7.
Kuthiala G, Chaudhary G. Ropivacaine: A review of its pharmacology and clinical use. Indian J Anaesth 2011;55:104-10.  Back to cited text no. 7
[PUBMED]  Medknow Journal  
8.
Mehourotra MS, Mehourotra MM. Regional block anesthesia – How effective is it for extremity trauma? MJAFI 2002;58:205-9.  Back to cited text no. 8
    
9.
Aksoy M, Dostbil A, Ince I, Ahiskalioglu A, Alici HA, Aydin A, et al. Continuous spinal anaesthesia versus ultrasound-guided combined psoas compartment-sciatic nerve block for hip replacement surgery in elderly high-risk patients: A prospective randomised study. BMC Anesthesiol 2014;14:99.  Back to cited text no. 9
[PUBMED]    
10.
Akkaya A, Tekelioglu UY, Demirhan A, Ozturan KE, Bayir H, Kocoglu H, et al. Ultrasound-guided femoral and sciatic nerve blocks combined with sedoanalgesia versus spinal anesthesia in total knee arthroplasty. Korean J Anesthesiol 2014;67:90-5.  Back to cited text no. 10
    
11.
Mohan V, Jithendra, Dhanan B, Sugath S. TKR under combined femoral and sciatic nerve blocks. Kerala J Orthop 2014;27:104-6.  Back to cited text no. 11
    
12.
Papper EM, Brodie BB, Rovenstine EA. Postoperative pain; its use in the comparative evaluation of analgesics. Surgery 1952;32:107-9.  Back to cited text no. 12
[PUBMED]    
13.
Tagariello V. Sciatic nerve blocks: Approaches, techniques, local anaesthetics and manipulations. Anaesthesia 1998;53 Suppl 2:15-7.  Back to cited text no. 13
[PUBMED]    
14.
Elmawgoud AA, Badawy A, Elkassem SA, Rashwan D. Effect of addition of magnesium sulphate and fentanyl to ropivacaine continuous femoral nerve block in patients undergoing elective total knee replacement. J Med Sci 2008;8:395-9.  Back to cited text no. 14
    
15.
Petroheilou K, Livanios S, Zavras N, Hager J, Fassoulaki A. Sciatic lateral popliteal block with clonidine alone or clonidine plus 0.2% ropivacaine: Effect on the intra- and post-operative analgesia for lower extremity surgery in children: A randomized prospective controlled study. BMC Anesthesiol 2012;12:2.  Back to cited text no. 15
[PUBMED]    
16.
Casati A, Borghi B, Fanelli G, Cerchierini E, Santorsola R, Sassoli V, et al. A double-blinded, randomized comparison of either 0.5% levobupivacaine or 0.5% ropivacaine for sciatic nerve block. Anesth Analg 2002;94:987-90.  Back to cited text no. 16
    
17.
Theodosiadis P, Sachinis N, Goroszeniuk T, Grosomanidis V, Chalidis B. Ropivacaine versus bupivacaine for 3-in-1 block during total knee arthroplasty. J Orthop Surg (Hong Kong) 2013;21:300-4.  Back to cited text no. 17
    
18.
Fanelli G, Casati A, Beccaria P, Aldegheri G, Berti M, Tarantino F, et al. A double-blind comparison of ropivacaine, bupivacaine, and mepivacaine during sciatic and femoral nerve blockade. Anesth Analg 1998;87:597-600.  Back to cited text no. 18
    
19.
Magistris L, Casati A, Albertin A, Deni F, Danelli G, Borghi B, et al. Combined sciatic-femoral nerve block with 0.75% ropivacaine: Effects of adding a systemically inactive dose of fentanyl. Eur J Anaesthesiol 2000;17:348-53.  Back to cited text no. 19
    
20.
Tang S, Hong X, Huang Y, Ren H, Ye T, Luo A. Sufentanil does not enhance the efficacy of ropivacaine in combined lumbar plexus and sciatic block: A controlled randomized clinical trial. Acute Pain 2007;9:59-63.  Back to cited text no. 20
    


    Figures

  [Figure 1], [Figure 2], [Figure 3]
 
 
    Tables

  [Table 1], [Table 2]


This article has been cited by
1 Lateral Supratrochanteric Approach to Sciatic and Femoral Nerve Blocks in Children: A Feasibility Study
Andrew A. Albokrinov,Ulbolhan A. Fesenko,Taras B. Huz,Valentyna M. Perova-Sharonova
Anesthesiology Research and Practice. 2017; 2017: 1
[Pubmed] | [DOI]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed3647    
    Printed52    
    Emailed0    
    PDF Downloaded251    
    Comments [Add]    
    Cited by others 1    

Recommend this journal