Anesthesia: Essays and Researches  Login  | Users Online: 586 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Home | About us | Editorial board | Ahead of print | Search | Current Issue | Archives | Submit article | Instructions | Copyright form | Subscribe | Advertise | Contacts


 
Table of Contents  
ORIGINAL ARTICLE
Year : 2017  |  Volume : 11  |  Issue : 4  |  Page : 987-992  

A comparison of intrathecal dexmedetomidine and neostigmine as adjuvant to ropivacaine for lower limb surgeries: A double-blind randomized controlled study


Department of Anaesthesia, Nalanda Medical College and Hospital, Patna, Bihar, India

Date of Web Publication28-Nov-2017

Correspondence Address:
Abhyuday Kumar
A-3, Ashok Puri Colony, Khazpura, Patna, Bihar
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/aer.AER_62_17

Rights and Permissions
   Abstract 


Objective: The primary objective of this study was to compare the analgesic effects of intrathecal ropivacaine with or without neostigmine or dexmedetomidine in lower limb surgeries. Secondary objectives were to study the characteristics of block, duration of analgesia, postoperative analgesic requirement, and associated side effects. Materials and Methods: Seventy-five patients posted for elective orthopedic lower limb surgeries under spinal anesthesia were randomly divided into three equal groups to receive intrathecal ropivacaine 0.5% alone (Group R), with adjuvant 5 μg dexmedetomidine (Group R + D) or 50 μg neostigmine (Group R + N). Time to achieve T10 sensory block, time to 2-segment regression, duration of regression to L4, maximum modified Bromage score and duration of analgesia were noted. The incidences of adverse events such as nausea, vomiting, hypotension, bradycardia, desaturation, shivering, and itching were also noted. Statistical analysis was performed using two sample t-test for normally distributed variables and Pearson's Chi-squared test for categorical data. The level of significance was set as P < 0.05. Results: Quality of motor and sensory blockage was significantly better in both Group R + D and Group R + N than Group R. Mean time to achieve T10 sensory block was lowest, time taken in regression of block by 2-segments and duration of regression to L4 was longest in Group R + D and was significant when compared to other groups. Adverse effects such as nausea and vomiting were highest in Group R + N and was statistically significant as compared to other groups. Conclusions: Dexmedetomidine is a better intrathecal adjuvant emerged as compared to neostigmine due to faster onset of anesthesia, better intra- and post-operative analgesia and prolonged duration of motor and sensory blockade without significant increase in adverse effects.

Keywords: Dexmedetomidine, intrathecal, neostigmine, ropivacaine, spinal


How to cite this article:
Singh AK, Kumar A, Kumar A, Prasad BK, Tiwary PK, Kumar R. A comparison of intrathecal dexmedetomidine and neostigmine as adjuvant to ropivacaine for lower limb surgeries: A double-blind randomized controlled study. Anesth Essays Res 2017;11:987-92

How to cite this URL:
Singh AK, Kumar A, Kumar A, Prasad BK, Tiwary PK, Kumar R. A comparison of intrathecal dexmedetomidine and neostigmine as adjuvant to ropivacaine for lower limb surgeries: A double-blind randomized controlled study. Anesth Essays Res [serial online] 2017 [cited 2019 Sep 15];11:987-92. Available from: http://www.aeronline.org/text.asp?2017/11/4/987/207808




   Introduction Top


Subarachnoid block is still the first choice for lower limb surgeries because of its rapid onset, superior blockade, low risk of infection as from catheter in situ, less failure rates, and cost-effectiveness, but has the drawback of shorter duration of the block and lack of postoperative analgesia. The duration and quality of spinal anesthesia can be increased by increasing the dose and concentration of local anesthetic but on the cost of local anesthetic systemic toxicity.

Ropivacaine is nearly identical to bupivacaine in onset, and quality of sensory block, has a better safety profile, but it produces lesser duration of motor blockade.[1] Thus ropivacaine is very useful for short duration surgeries as well as for early ambulation, but postoperative pain is an important concern.

In recent years, use of intrathecal adjuvant has gained popularity with the aim of prolonging the duration of block, better success rate, patient satisfaction, decreased resource utilization compared with general anesthesia and faster recovery. Hence, the aim was to find a drug as an adjuvant with ropivacaine which provides better intraoperative hemodynamic condition as well as prolonged postoperative analgesia with minimal side effects. Commonly opioids are used as adjuvants to local anesthetic, but they are associated with a number of undesirable side effects including delayed respiratory depression, urinary retention, pruritus, hemodynamic instability, nausea, and vomiting.[2]

Neostigmine is an anticholinesterase agent which increases the acetylcholine concentrations at cholinergic synapses. Spinal neostigmine apparently activates descending pain inhibitory systems that rely on a spinal cholinergic interneuron, probably exacerbating a cholinergic tonus that is already activated during the postoperative period [3],[4],[5],[6] and seems to be extremely efficient for alleviating somatic pain.

Dexmedetomidine is a more selective α2-adrenoceptor agonist and has recently been used as an adjuvant to intrathecal local anesthesia.[7],[8],[9] Gupta et al.[10] used 5 μg of dexmedetomidine with ropivacaine and found it to be associated with prolonged motor and sensory block, hemodynamic stability and reduced demand for rescue analgesics in 24 h as compared to fentanyl. Intrathecal α2-receptor agonists are found to have an antinociceptive action for both somatic and visceral pain.

The primary objective was to compare the analgesic effects of intrathecal ropivacaine with or without neostigmine or dexmedetomidine in lower limb surgeries. Secondary objectives were to study the characteristics of block, duration of analgesia, postoperative analgesic requirement, and associated side effects.


   Materials and Methods Top


This prospective randomized controlled, double-blinded study was conducted on 75 patients from September 2015 to July 2016 with the approval of an ethical committee of the institution. A written and informed consent was obtained from all patients. Patients included for the study were the American Society of Anesthesiologists (ASA) physical status Class I or II, of either sex (18–60 years) presenting for elective lower limb surgeries. Patients who had contraindications to spinal anesthesia, allergy to the drug, were excluded from the study groups. All patients received a tablet of alprazolam 0.5 mg orally the night before surgery. On arrival in the operating room, intravenous (i.v.) access was secured with 18G cannula and patients were preloaded with ringer's lactate solution at 15 ml/kg. All patients were monitored with automated noninvasive blood pressure, pulse oxymetry, and electrocardiogram. Spinal needles used were 26 G pencil point needles and were introduced at L3–L4 interspace in sitting position with all aseptic precautions. Patients were allocated into three groups having 25 patients in each group. They were randomized on the basis of a sealed envelope technique to receive one of the following:

  • Group R: Patients received 3 ml of ropivacaine 0.5% +0.1 ml normal saline intrathecally
  • Group (R + D): Patients received 3 ml of ropivacaine 0.5% +5 μg dexmedetomidine (0.1 ml) intrathecally
  • Group (R + N): Patients received 3 ml of ropivacaine 0.5% +50 μg neostigmine (0.1 ml) intrathecally.


Injections were given over approximately 10–15 s. Immediately, after completion of the block, patients were made to the supine position. Oxygen was administrated through a mask if the pulse oximetry reading decreased below 92%. Hypotension was defined as a decrease in systolic blood pressure by more than 30% from baseline or <90 mmHg and was treated with incremental i.v. doses of mephentermine 3 mg and further boluses of i.v. fluid as required. Bradycardia was defined as heart rate (HR) <50 bpm was treated with i.v. atropine 0.6 mg if it was associated with hypotension. The incidence of adverse effects such as nausea, vomiting, shivering, itching, pruritus, respiratory depression, sedation, and hypotension was recorded. Sensory testing was assessed by loss of pinprick sensation to 23 G hypodermic needle and dermatome levels were tested every 2 min until the highest level had stabilized for four consecutive tests. Testing was then conducted every 10 min until the point of two segment regression of the block. Further testing was performed at 20 min intervals until the recovery of L4 dermatome. Anesthesiologist who performed the block and did an assessment of the block was different from one who prepared the drugs. The surgeons were blinded to the patient groups. Data regarding the time to reach T10 from the time of injection, time to 2-sensory regression and incidence of side effects were collected. Sedation score was assessed with a four-point verbal rating scale (1 = no sedation, 2 = light sedation, 3 = somnolence, 4 = deep sedation).

Intra- and post-operatively, pain scores were recorded using visual analog scale (VAS) between 0 and 10 (0 = no pain, 10 = the most severe pain), initially every 1 h for 2 h, then every 2 h for next 8 h and then after every 4 h till 24 h. Injection fentanyl 0.5 μg/kg i.v. was given intraoperatively as rescue analgesia when VAS ≥2. Follow-up was carried out 1 week postoperatively by the blinded anesthetist who asked about postoperative headache as well as postoperative pain and dysesthesias in the buttock, thighs, or lower limbs. Statistical analysis was done by statistical programming software Statistical Package for the Social Sciences (SPSS) Statistics version 23.0.0 (SPSS Inc., Chicago, Illinois, USA) for analyzing the collected data. Parametric data were reported as an arithmetic mean ± standard deviation and analyzed by using two sample t-test. The comparison of categorical data was studied using Pearson's Chi-squared test. P < 0.05 was considered statistically significant. Twenty-five patients per group were required to detect a significant difference of 25% or more in the requirement of rescue analgesia between the two groups (power of 85%, α = 0.05).


   Results Top


The groups were comparable with respect to age, sex, height, weight, ASA physical status class, and duration of surgery [Table 1]. There was no significant difference in the type of surgery [Table 2].
Table 1: Demographic profile

Click here to view
Table 2: Type of lower limb surgeries performed

Click here to view


The mean time to achieve T10 sensory block, time to 2-segment regression and duration of regression to L4 was significantly different among the groups. Mean time to achieve T10 sensory block was lowest in Group R + D and was significant when compared to other groups. Time taken in regression of block by 2-segments and duration of regression to L4 was longest in Group R + D and was significant when compared to other groups [Table 3].
Table 3: Sensory block characteristics

Click here to view


Maximum modified Bromage score and Bromage score at 2 h was lowest in Group R + D and was significant as compared to other groups. Time to motor recovery was longest in Group R + D which was statistically significant when compared to other groups [Table 4].
Table 4: Motor block characteristics

Click here to view


None of the patients in Group R + D required fentanyl and midazolam as rescue analgesia and sedation in the intraoperative period. Fentanyl and midazolam requirement was highest in Group R and was significant as compared to Group R + N. Requirement of mephentermine and atropine was highest in Group R + D [Table 5]. Intra-operative VAS was minimum and sedation was maximum in Group R + D which was statistically significant as compared to other groups [Table 6]. Time to 1st analgesia requirement postoperatively was significantly delayed in both Group R + D and Group R + N as compared to Group R. Time to 1st analgesic requirement was longest in Group R + D and was also found to be significantly delayed as compared to Group R + N. However, total dose of Tramadol used in the 24 h postoperative period did not differ among the groups [Table 7].
Table 5: Intra-operative drug requirement

Click here to view
Table 6: Intra-operative visual analog scale and sedation score

Click here to view
Table 7: Postoperative analgesia requirement

Click here to view


Adverse effects such as bradycardia and hypotension were highest in Group R + D but not statistically significant. Nausea and vomiting were highest in Group R + N and was statistically significant as compared to other groups [Table 8].
Table 8: Frequency distribution of adverse effects in three groups

Click here to view



   Discussion Top


Ropivacaine is now seen as an alternative to bupivacaine because of its less toxic effect on the central nervous system and cardiovascular system and rapid recovery of motor function. In the previous studies [11],[12] intrathecal injection of plain ropivacaine produced a sensory block of variable extent and considerable number of patients required general anesthesia to accomplish surgery. Hyperbaric ropivacaine produces more predictable and reliable sensory and motor block, with faster onset than a plain solution.[13],[14] As hyperbaric ropivacaine is not available commercially, various adjuvants are studied to increase its sensory block and decrease its disadvantages.

Alpha-2 adrenergic agonistic action of dexmedetomidine has a synergistic effect on local anesthetics through prolongation of the sensory block by depressing neurotransmitter release from C-fibers of the spinal cord leading to hyperpolarization of postsynaptic dorsal horn neurons.[15] Motor block prolongation also occurs in conjunction by binding of α2 agonists to motor neuron in the dorsal horn of spinal cord. Dexmedetomidine has been used intrathecally in varying doses ranging from 3 to 15 μg.[8],[16],[17],[18],[19] The optimal dose of intrathecal dexmedetomidine has not been established. Sullivan et al.[20] have found in their study that ED50 of dexmedetomidine for inhibition of C fiber responses of dorsal horn neurons was 2.5 μg and β-evoked responses were inhibited to a lesser degree with a maximum inhibition seen above 10 μg dose. Hence, in this study, a low dose of 5 μg (more than ED50) was used to provide adequate postoperative analgesia, limit the motor blockade and facilitate early recovery and ambulation.

It is speculated that neostigmine being a cholinesterase inhibitor increases the spinal level of acetylcholine. Acetylcholine at a spinal level may augment the motor blockage as a result of axonal conduction block from the local anesthetic. Spinal neostigmine is advantageous over other currently used spinal drugs as it causes no hypotension, no sedation, no respiratory depression or neurological dysfunction.[4],[21] Most of the studies have used neostigmine with bupivacaine. Our study was unique in using neostigmine with ropivacaine which has better safety profile as compared to bupivacaine. It was postulated that neostigmine as an adjuvant to ropivacaine will augment its motor and sensory blockage. Doses ranging from 6.25 to 150 μg of intrathecal neostigmine have been used in previous studies.[4],[21],[22],[23],[24],[25] Most of the studies [22],[23],[24] have found 50 μg of neostigmine as the adequate dose for intrathecal use as increasing the dose causes increase in side effects such as nausea and vomiting.

Thus, our study was designed to evaluate a better adjuvant to ropivacaine for lower limb surgeries.

The addition of dexmedetomidine or neostigmine both significantly decreased the time to reach sensory blockage and increased the duration of the block as compared to plain intrathecal ropivacaine. However, dexmedetomidine was significantly better in both early onset and long duration of the block as compared to neostigmine. Mean time to reach sensory T10 level was 5.42 min with 5 μg dexmedetomidine which was similar to findings of Naithani et al.[26]

Liu et al.[22] and Pan et al.[27] demonstrated prolonged durations of sensory block with 50 μg of neostigmine with intrathecal bupivacaine in their studies which had similar findings as ours studies.

Both dexmedetomidine and neostigmine when added as an adjuvant to intrathecal ropivacaine increased the quality and duration of motor blockage. Dexmedetomidine significantly produced better motor blockage and increased the duration of motor blockage as compared to neostigmine. Liu et al.,[22] Pan et al.,[27] and Tan et al.[28] have also found a significantly prolonged motor block with a similar dose of neostigmine. Intrathecal neostigmine causes motor block by acetylcholine-mediated reduction in motor neuron outflow with no reduction in spinal cord blood flow or histopathological changes.[29]

VAS was minimum and sedation was maximum with dexmedetomidine which was significant as compared to other group. None of the patients in this group required rescue analgesic or sedation intraoperatively. This was due to better and long lasting sensory and motor blockage. Time to first analgesic requirement postoperatively was approximately 6 h in both dexmedetomidine and neostigmine as compared to 4 h in plain ropivacaine group.

Al-Ghanem et al.[7] have reported the use of dexmedetomidine to be associated with a decrease in HR and blood pressure. In the present study, incidence of side effects such as hypotension and bradycardia were more common with both dexmedetomidine and neostigmine but was statistically nonsignificant. The reason could be a combination of dexmedetomidine with ropivacaine which is a better drug in terms of cardiovascular and hemodynamic control.

Intrathecal neostigmine is associated with nausea and vomiting which is dose-dependent, severe and minimum at doses <5 μg.[30] Nausea associated with spinal neostigmine is thought to result from the spread in cerebrospinal fluid to brainstem sites. Ho et al.[31] in a meta-analysis aimed to evaluate the effectiveness and side-effects of intrathecal neostigmine in the perioperative and peripartum settings found that it is associated with significant side-effects and the disadvantages outweigh the minor improvement in analgesia achieved. Our study have also found incidence of nausea and vomiting in more than 40% of the patients making it difficult to use routinely despite better quality and duration of block characteristics.


   Conclusions Top


In this study, dexmedetomidine emerged as a superior drug when compared to neostigmine as an adjunct with intrathecal ropivacaine 0.5% for patients undergoing lower limb surgery because it provides faster onset of anesthesia, better intra- and post-operative analgesia and prolonged duration of motor and sensory blockade without a significant increase in adverse effects. Neostigmine in the dose of 50 μg intrathecally produces a better quality of block but with a higher incidence of side effects. Therefore, we encourage a formal study to determine an optimal dose of intrathecal neostigmine which is devoid of side effects.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.



 
   References Top

1.
McConachie I, McGeachie J, Barrie J. Regional anaesthetic techniques. In: Thomas EJ, Knight PR, editors. Wylie and Churchill-Davidson's – A Practice of Anesthesia. Vol. 37. London: Arnold; 2003. p. 599-612.  Back to cited text no. 1
    
2.
Campora E, Merlini L, Pace M, Bruzzone M, Luzzani M, Gottlieb A, et al. The incidence of narcotic-induced emesis. J Pain Symptom Manage 1991;6:428-30.  Back to cited text no. 2
    
3.
Bouaziz H, Tong C, Eisenach JC. Postoperative analgesia from intrathecal neostigmine in sheep. Anesth Analg 1995;80:1140-4.  Back to cited text no. 3
    
4.
Lauretti GR, Reis MP, Prado WA, Klamt JG. Dose-response study of intrathecal morphine versus intrathecal neostigmine, their combination, or placebo for postoperative analgesia in patients undergoing anterior and posterior vaginoplasty. Anesth Analg 1996;82:1182-7.  Back to cited text no. 4
    
5.
Krukowski JA, Hood DD, Eisenach JC, Mallak KA, Parker RL. Intrathecal neostigmine for post-cesarean section analgesia: Dose response. Anesth Analg 1997;84:1269-75.  Back to cited text no. 5
    
6.
Abram SE, Winne RP. Intrathecal acetyl cholinesterase inhibitors produce analgesia that is synergistic with morphine and clonidine in rats. Anesth Analg 1995;81:501-7.  Back to cited text no. 6
    
7.
Al-Ghanem SM, Massad IM, Al-Mustafa MM, Al-Zaben KR, Qudaisat IY, Qatawneh AM, et al. Effect of adding dexmedetomidine versus fentanyl to intrathecal bupivacaine on spinal block characteristics in gynecological procedures: A double blind controlled study. Am J Appl Sci 2009;6:882-7.  Back to cited text no. 7
    
8.
Kanazi GE, Aouad MT, Jabbour-Khoury SI, Al Jazzar MD, Alameddine MM, Al-Yaman R, et al. Effect of low-dose dexmedetomidine or clonidine on the characteristics of bupivacaine spinal block. Acta Anaesthesiol Scand 2006;50:222-7.  Back to cited text no. 8
    
9.
Al-Mustafa MM, Abu-Halaweh SA, Aloweidi AS, Murshidi MM, Ammari BA, Awwad ZM, et al. Effect of dexmedetomidine added to spinal bupivacaine for urological procedures. Saudi Med J 2009;30:365-70.  Back to cited text no. 9
    
10.
Gupta R, Bogra J, Verma R, Kohli M, Kushwaha JK, Kumar S. Dexmedetomidine as an intrathecal adjuvant for postoperative analgesia. Indian J Anaesth 2011;55:347-51.  Back to cited text no. 10
[PUBMED]  [Full text]  
11.
van Kleef JW, Veering BT, Burm AG. Spinal anesthesia with ropivacaine: A double-blind study on the efficacy and safety of 0.5% and 0.75% solutions in patients undergoing minor lower limb surgery. Anesth Analg 1994;78:1125-30.  Back to cited text no. 11
    
12.
Wahedi W, Nolte H, Klein P. Ropivacaine for spinal anesthesia. A dose-finding study. Anaesthesist 1996;45:737-44.  Back to cited text no. 12
    
13.
Whiteside JB, Burke D, Wildsmith JA. Spinal anaesthesia with ropivacaine 5 mg ml(-1) in glucose 10 mg ml(-1) or 50 mg ml(-1). Br J Anaesth 2001;86:241-4.  Back to cited text no. 13
    
14.
Whiteside JB, Burke D, Wildsmith JA. Comparison of ropivacaine 0.5% (in glucose 5%) with bupivacaine 0.5% (in glucose 8%) for spinal anaesthesia for elective surgery. Br J Anaesth 2003;90:304-8.  Back to cited text no. 14
    
15.
Fairbanks CA, Wilcox GL. Spinal antinociceptive synergism between morphine and clonidine persists in mice made acutely or chronically tolerant to morphine. J Pharmacol Exp Ther 1999;288:1107-16.  Back to cited text no. 15
    
16.
Mohamed AA, Fares KM, Mohamed SA. Efficacy of intrathecally administered dexmedetomidine versus dexmedetomidine with fentanyl in patients undergoing major abdominal cancer surgery. Pain Physician 2012;15:339-48.  Back to cited text no. 16
    
17.
Kim JE, Kim NY, Lee HS, Kil HK. Effects of intrathecal dexmedetomidine on low-dose bupivacaine spinal anesthesia in elderly patients undergoing transurethral prostatectomy. Biol Pharm Bull 2013;36:959-65.  Back to cited text no. 17
    
18.
Abdelhamid SA, El-Lakany MH. Intrathecal dexmedetomidine: Useful or not? J Anesth Clin Res 2013;4:351.  Back to cited text no. 18
    
19.
Hala EA, Mohamed SA, Hend Y. Dose-related prolongation of hyperbaric bupivacaine spinal anesthesia by dexmedetomidine. Ain Shams J Anesthesiol 2011;4:83-95.  Back to cited text no. 19
    
20.
Sullivan AF, Kalso EA, McQuay HJ, Dickenson AH. The antinociceptive actions of dexmedetomidine on dorsal horn neuronal responses in the anaesthetized rat. Eur J Pharmacol 1992;215:127-33.  Back to cited text no. 20
    
21.
Hood DD, Mallak KA, Eisenach JC, Tong C. Interaction between intrathecal neostigmine and epidural clonidine in human volunteers. Anesthesiology 1996;85:315-25.  Back to cited text no. 21
    
22.
Liu SS, Hodgson PS, Moore JM, Trautman WJ, Burkhead DL. Dose-response effects of spinal neostigmine added to bupivacaine spinal anesthesia in volunteers. Anesthesiology 1999;90:710-7.  Back to cited text no. 22
    
23.
Raghavan RK, Reghunathan U, Meleveethil B, Meleveettil AJ. Intrathecal neostigmine with hyperbaric bupivacaine on the effects of spinal anaesthesia and postoperative analgesia – Randomised prospective double blind study. Indian J Clin Anaesth 2016;3:626-30.  Back to cited text no. 23
    
24.
Pandey V, Mohindra BK, Sodhi GS. Comparative evaluation of different doses of intrathecal neostigmine as an adjuvant to bupivacaine for postoperative analgesia. Anesth Essays Res 2016;10:538-45.  Back to cited text no. 24
[PUBMED]  [Full text]  
25.
Yoganarasimha N, Raghavendra T, Amitha S, Shridhar K, Radha M. A comparative study between intrathecal clonidine and neostigmine with intrathecal bupivacaine for lower abdominal surgeries. Indian J Anaesth 2014;58:43-7.  Back to cited text no. 25
[PUBMED]  [Full text]  
26.
Naithani U, Meena MS, Gupta S, Meena K, Swain L, Pradeep DS. Dose-dependent effect of intrathecal dexmedetomidine on isobaric ropivacaine in spinal anesthesia for abdominal hysterectomy: Effect on block characteristics and hemodynamics. J Anaesthesiol Clin Pharmacol 2015;31:72-9.  Back to cited text no. 26
[PUBMED]  [Full text]  
27.
Pan PM, Huang CT, Wei TT, Mok MS. Enhancement of analgesic effect of intrathecal neostigmine and clonidine on bupivacaine spinal anesthesia. Reg Anesth Pain Med 1998;23:49-56.  Back to cited text no. 27
    
28.
Tan PH, Kuo JH, Liu K, Hung CC, Tsai TC, Deng TY. Efficacy of intrathecal neostigmine for the relief of postinguinal hemiorrhaphy pain. Acta Anaesthesiol Scand 2000;44:1056-60.  Back to cited text no. 28
    
29.
Hood DD, Eisenach JC, Tuttle R. Phase I safety assessment of intrathecal neostigmine methylsulfate in humans. Anesthesiology 1995;82:331-43.  Back to cited text no. 29
    
30.
Lauretti GR. The evolution of spinal/epidural neostigmine in clinical application: Thoughts after two decades. Saudi J Anaesth 2015;9:71-81.  Back to cited text no. 30
[PUBMED]  [Full text]  
31.
Ho KM, Ismail H, Lee KC, Branch R. Use of intrathecal neostigmine as an adjunct to other spinal medications in perioperative and peripartum analgesia: A meta-analysis. Anaesth Intensive Care 2005;33:41-53.  Back to cited text no. 31
    



 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5], [Table 6], [Table 7], [Table 8]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusions
    References
    Article Tables

 Article Access Statistics
    Viewed1354    
    Printed15    
    Emailed0    
    PDF Downloaded67    
    Comments [Add]    

Recommend this journal