Anesthesia: Essays and Researches  Login  | Users Online: 505 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Home | About us | Editorial board | Ahead of print | Search | Current Issue | Archives | Submit article | Instructions | Copyright form | Subscribe | Advertise | Contacts
ORIGINAL ARTICLE
Year : 2018  |  Volume : 12  |  Issue : 1  |  Page : 24-25

Simple predictor of minute ventilation: Holliday-Segar revisited


1 Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India
2 Department of Anaesthesiology, Safdarjung Hospital, New Delhi, India
3 Department of Anaesthesiology, Sri Ramchandra Medical College, Chennai, Tamil Nadu, India
4 Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India

Correspondence Address:
Dr. Priyankar Kumar Datta
Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, Room 5011, Acad Block, New Delhi - 110 029
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/aer.AER_158_17

Rights and Permissions

Background: Minute ventilation (MV) and calorific requirement (CR) are both functions of metabolic demand. The Holliday-Segar formula is a weight-based tool for predicting CR. This study was performed to derive an equation, based on the Holliday-Segar formula, for calculating resting MV from body-weight (BW), which is applicable for all age groups. Methods: MV for BW (obtained from Radford normogram) was plotted against CR for BW (as per Holliday-Segar formula), for BWs ranging from neonates to adults. From the scatter plot thus obtained, best-fit line, with the origin as intercept, was drawn. Linear regression analysis was used to obtain R2 coefficient and P value. Results: The plot of MV against CR yields a straight line passing through the origin with a slope = 46.87. R2 value is 0.98886, P < 0.001. Conclusion: MV can be easily and reliably estimated for all age groups from the equation: MV (mL/min) = 47 × CR (kcal/h).


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed501    
    Printed48    
    Emailed0    
    PDF Downloaded61    
    Comments [Add]    

Recommend this journal